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Compressible laminar boundary-layer flow at 
a point of attachment 

By G. POOTS 
Department of Theoretical Mechanics, Universit,y of Bristol 

(Received 18 September 1964) 

Howarth’s transformation is applied to the compressible laminar boundary-layer 
equations for the flow a t  a point of attachment on a general curved surface. It is 
shown that the boundary-layer equations yield similarity solutions for the case 
when the viscosity varies linearly with the temperature, the Prandtl number is 
unity and the surface is maintained a t  constant temperature. The resulting 
eighth-order boundary-value problem is solved numerically for various surface 
temperature conditions and for various values of bla, where a and b are constants 
representing the local velocity gradients in the principal directions of flow a t  the 
edge of the boundary layer. 

Flow and heat transfer properties of the similar solutions a t  both nodal and 
saddle-points of attachment are given in graphical and tabular form. 

1. Introduction 
For the incompressible flow a t  a three-dimensional nodal point of attachment, 

Howarth ( 1951) has shown that the boundary-layer equations yield similarity 
solutions which are also exact solutions of the Navier-Stokes equations. The 
external flow is assumed to be irrotational and given by {ax,, bx2, - (a + b) x3}, 
where xl, x2 are Cartesian co-ordinates of any point on the tangent plane at  the 
stagnation point x1 = x2 = 0 and x3 is measured along the normal a t  the stagna- 
tion point. Howarth discussed the properties of these solutions for c = b/a = 0, &, 
fr,i and 1 ; the limiting values c = 0 and 1 corresponding to the two-dimensional 
and axially symmetric stagnation points, respectively. In  a later paper Davey 
(1961) showed that similar solutions exist for c 3 - 1. In  Davey’s terminology 
the similar solutions for - 1 < c < 0 correspond to the flow near saddle-points 
of attachment and may in some cases be related to the flow in the vicinity of 
geometrical saddle-points on the surface. The main feature of Howarth’s results 
is that rapid changes are produced in the boundary-layer flow as soon as the 
external stream departs from its two-dimensional form (c = 0 ) ;  the results of 
Davey show that part of the boundary-layer flow is reversed when c 6 - 0.4394. 

It is the purpose of this paper to discuss the corresponding compressible 
laminar boundary-layer flow a t  both nodal and saddle-points of attachment. 
The external flow is assumed to be irrotational and the surface is maintained at  
constant temperature. A transformation, due to Howarth (1948), is applied to 
the boundary-layer equations for a gas in which the Prandtl number is unity and 
the viscosity varies linearly with the temperature. The transformed boundary- 
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layer equations possess similar solutions which are investigated numerically. 
These solutions are then used to discuss the dependence of skin friction and heat 
transfer on the external stream and surface temperature conditions. Note that 
the incompressible solutions obtained by Howarth (1951) and Davey (1961) 
correspond to compressible solutions in the present problem for the case of a 
thermally insulated surface. Other relevant solutions are the similar solutions 
of Cohen & Reshotko (1955) on two-dimensional and axially symmetric point 
flows for various surface temperature conditions. 

2. The compressible laminar boundary-layer equations 

that the element of length ds on X is given by 
Consider a system of co-ordinates x,, x2 orthogonal on the surface S and such 

(2.1) 

where h, and h, are functions of x1 and x,. If x, is measured along the normal to the 
surface a t  the point (x,, x2) the compressible laminar boundary-layer equations, 
as given by Stewartson (1964, p. 22), are as follows: 

ds2 = h2, dx2, + hi dxi, 

and 

Here (v1,v2,v3) are the velocity components in the (x,, x,, x,)-directions, re- 
spectively, T is the temperature and the pressure pe is independent of x,; the 
suffix e is used to-denote the main stream condition. The dependence of viscosity 
on the temperature of the gas is taken as 

where the suffix 0 is used to denote a reference condition in the main stream. 
Let P be the stagnation point of attachment of the flow over S. It is ~ Q W  

chosen as the origin of the co-ordinate system such that a t  P,  x1 = x2 = x, = 0 
and h, = h, = 1. If the surface is regular at P then on neglecting all terms 
O(x,, x,) the relevant boundary-layer equations for the flow in the vicinity of L 
stagnation point are: 

( ;:) ( i2 ax2 ax3 axl ax, 
a 

p v,--+v,-+v,- =-a+- p- , 



and 

Compressible laminar boundary-layer $ow 199 

(2.9) 

= - a (2-) pc aT +p),+ (%)3, (2.10). 
ax3 0- ax3 axl ax, 

(2.12) 

For Prandtl number (r = pc,/k = 1 the energy equation (2.10) possesses a 
simple integral. On multiplying equation (2.8) by vl, equation (2.9) by v,, and 
adding these to equation (2. lo), there follows the equation 

(2.13) 

where H = cP T + 4~: + +v;, (2.14) 

the approximate total enthalpy of the system. Thus, no matter what the viscosity 

(2.15) 
law, if CT = 1, H = He = Ho = const. 

is an integral of (2.10). It corresponds to a surface which is thermally insulated 
since ( a T / a ~ , ) ~ ~ = ~  = 0 when v1 = v2 = 0 (see Crocco 1946). 

Stewartson (1964, p. 62) has shown that even in the case when heat transfer 
occurs at the surface the energy equation (2.10) can be simplified. If the main 
stream is homenergic then 

*(v? + v;)e + __ 4 = *(v; + v;)o + __, a; (2.16) 

where the suffix 0 is now used to denote a reference point in the main stream when 
x1 = x2 = 0. Stewartson introduces the dimensionless enthalpy function 

Y-1 Y-1 

X = ( H  - Ho)/Ho (2.17) 

and the energy equation (2.13) is 

as a ( ::) as as 
2, -+v -+v -=- -  p- 
laxl ,ax, 3ax3 pax3 

(2.18) 

The temperature is now determined by the expression 

- T = 1 + ~ ( l + ~ ( v ~ + v ~ ) o ) 8 + y ~ { ( v ~ + v ~ ) e - v ~ - v : ) ;  (2.19) 
T, T e  2a; 2 4  

in particular it may be shown that the surface temperature 

TW = (1 + 8,) To, (2.20) 

where the suffix w denotes the condition at the surface. 
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The boundary conditions for the compressible laminar boundary-layer flow 
in the immediate neighbourhood of a point of attachment are: 

(2.21) 1 at x, = 0, v1 = v, = v, = 0, S = sW7 
and as x3+co, v1 = ax,, v, = bx2, A!?+ 0. 

Following the method of Howarth (1948) it is now shown that the boundary- 
layer equations (2.8), (2.9), (2.11), (2.12), (2.18) and (2.19) can be partially 
reduced to the incompressible flow form. The Howarth transformation is 

(2.22) 

Stream functions (see Moore 1951) @ and @ satisfying the continuity equation 
(2.12) exist, and are defined as follows: 

These functions are modified by the transformations 

$(Xl ,X2>X3)  = (PlPO) 
x2, x3) = @/PO)’ #(% x29 x3); 

i t  follows that vl = axlax,, V ,  = a#lax,, 
and 

(2.23) 

(2.24) 

(2.25), (2.26) 

(2.27) 

The boundary-layer equations now become 
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respectively. Expression (2.19) completes the above system of equations. The 
appropriate boundary conditions are 

# = a#/aX, = x = 8x/aX3 = 0, S = 8, at X ,  = 0, 

and axlax, + ax,, a$/aX, + bxz, S + 0 as X, -+ co. (2.31) 

The flow is controlled by the parameters a, b and 8,. The constants a and b 
represent the local velocity gradients external to the boundary layer at the point 
of attachment. The dimensionless surface enthalpy function 8, determines the 
surface temperature by virtue of expression (2.20); the case 8, = - 1 corresponds 
to a surface temperature at absolute zero, S, = 1 corresponds to a surface 
temperature twice the external stream reference To, S, = 0 corresponds to a 
surface temperature a t  the reference temperature To and since u = 1 this implies 
the case of a thermally insulated surface. 

The transformed momentum equations (2.28) and (2.29) are nearly identical 
to the corresponding incompressible equations solved by Howarth (1951) and 
Davey (1961). The essential differences are the compressibility factors which 
multiply the pressure gradient terms. 

3. The similarity solutions 
The similarity solution of the transformed compressible laminar boundary- 

layer equations (2.28) to (2.30) subject to the boundary conditions (2.31) is 
expressed in the form 

x = (Vo“)+xlf(r), # = b(vo/a)+%g(r), = f l w h ( r ) ,  (3.1) 

where 
f ,  g and h satisfy the equations: 

= a&X,/v,$ is the dimensionless distance from the surface. The functions 

f ”  + (f + c g ) f  ” + ( 1 + xw h - f ’2) = 0,  

g” + ( f +  c g )  g” + c( 1 + 8, h - g’2) = 0, 

h” + (f+ cg)  h’ = 0, 

(3.2) 

(3.3) 

(3.4) 
where c = b/a. 

The boundary conditions for (3.2) to (3.4) are 

(3.5) 1 f = g = f ‘  = g‘ = 0 , h  = 1 

f ’ + l ,  g’-+1, h-+O as r+co. 
when 7 = 0, 

This system of equations constitute an eighth-order boundary-value problem. At 
this stage reference may be made to certain solutions which have previously been 
obtained: 

(i) S, = 0 corresponds to the case of a thermally insulated surface. The basic 
equations forfand g have been solved by Howarth (1951) for c = 0, 4, Q, 2 and 1 
and by Davey (1961) for values of c at intervals of 0-1 between 0 and - 1. Since 
Sw = 0, corresponding solutions of the h-equation are not relevant to the present 
problem. f 

t They do in fact relate to a physical problem in heat transfer. It is the problem of heat 
transfer at a point of attachment on a surface maintained at  temperature TI when an 
incompressible constant property fluid (a = 1) ahead of the surface is at temperature To. 
The local temperature distribution in the boundary layer is given by T = To + (TI - T,)h(q). 
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(ii) c = 0 and 1 correspond to the compressible flow at two-dimensional and 
axially symmetric stagnation points, respectively. Cohen & Reshotko (1 955) 
givesolutionsforc= I,&',= l , O ,  -0.4, -O.Sand-l;c=O,S,= 1. Moreover, 
sufficient information is given for estimates of the initial valuesf"(0) and h'(0) to 
be obtained by interpolation for c = 0, 8, = - 0.4, - 0.8 and - 1. 

8, C 

1.0 1.0 
0.75 
0.50 
0.25 
0.0 

- 0.25 
- 0.50 

0.0 1.0 
0.75 
0.50 
0.25 
0.0 

- 0.25 
- 0.50 

-0.4 1.0 
0.75 
0.50 
0.25 
0.0 

-0.8 1.0 
0.75 
0-50 
0.23 
0.0 

- 1.0 1.0 
0.75 
0.50 
0.25 
0.0 

- 0.25 
- 0.50 

f"(0) 

1.7463 
1.7383 
1.7338 
1.7332 
1.7367 
1.7421 
1.7453 

1.3119 
1.2886 
1.2669 
1.2476 
1.2326 
1.2251 
1.2302 

1.1246 
1.0947 
1.0652 
1.0371 
1.0121 

0-9263 
0.8894 
0.8515 
0.8130 
0.7755 

0.8219 
0.7814 
0.7389 
0.6944 
0.6489 
0.6081 
0.6030 

g"(0) 

1.7463 
1-5252 
1.2736 
0.9778 
0.6156 
0.1623 

- 0.3494 

1.3119 
1.1643 
0.9981 
0.8051 
0.5705 
0.2680 

-0.1115 

1.1246 
1.0084 
0.8785 
0.7290 
0.5482 

0.9263 
0.8431 
0.7512 
0.6467 
0.5219 

0-8219 
0.7560 
0.6838 
0.6026 
0.5067 
0.3785 
0.1583 

?2'(0) 

-0.8102 
- 0.7590 
- 0.7076 
- 0.6579 
- 0.6156 
- 0.5935 
- 0.6075 

- 0.7622 
-0.7139 
- 0.6644 
- 0.6153 
- 0.5705 
- 0.5410 
- 0.5484 

- 0.7394 
- 0.6923 
- 0.6438 
- 0.5947 
- 0.5482 

-0.7134 
- 0.6678 
- 0.6202 
- 0.5709 
- 0.5219 

- 0.6989 
- 0.6541 
- 0.6069 
- 0.5574 
- 0.5067 
- 0.461 1 
- 0.4546 

TABLE 1 

0.441 
0.444 
0.442 
0.436 
0.425 
0.413 
0.411 

0.569 
0.588 
0.609 
0.629 
0.648 
0.659 
0.655 

0.631 
0.659 
0.691 
0.725 
0.761 

0.703, 
0.741, 
0.786 
0.838 
0.898 

0.745 
0.788 
0.840 
0.903 
0.979 
1.062 
1-081 

0.441 
0.503 
0.591 
0.728 
0.959 
1-361 
1.936 

0.569 
0.629 
0.711 
0.832 
1.026 
1.375 
1.962 

0.631 
0.691 
0.771 
0.884 
1.063 

0.703, 
0.763 
0.840 
0.947 
1.109 

0-745 
0.804 
0.880 
0.984 
1.137 
1.412 
2.049 

1 a h  &) 
0.723 
0.771 
0.828 
0.893 
0.959 
1.005 
0-992 

0-762 
0.814 
0.875 
0.947 
1.026 
1.092 
1.089 

0.783 
0.836 
0.900 
0.976 
1.063 

0.807 
0-863 
0.929 
1.011 
1.109 

0.822 
0.878 
0.947 
1.032 
1-137 
1.255 
1.286 

Including the above mentioned known solutions the present paper gives 
solutions for the following cases: 

S, = 1,0, - 1 with c = 1( - 0.25) - 0.50; 

8, = - 0.4, - 0.8 with c = I( - 0.25)0*0. 

These solutions of the boundary value problem (3.2) to (3.5) have been obtained 
using the Bristol University I.B.M. Computer. The integrations were performed 
using Gill's modification of the Runge-Kutta method. An iterative scheme was 
used for the determination of the unknown initial values f"(O), g"(0) and h'(0). 
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Even with the use of a computer there are still considerable difficulties associated 
with the integration of the above equations especially for c < 0, as already 
discussed by Davey (1961)  for the case S, = 0. 

An accuracy of six to seven places of decimals was obtained in the determina- 
tion of the initial valuesf"(O), g"(0) and h'(0). These have been rounded off to four 
decimal places and are given in table 1 ; they are also given graphically in figure 1 
and values obtained by previous workers have been indicated. 

FIGURE 1. The initial values -f"(O), - - - g"(O), - . -h'(O). 
Howarth, ; Cohen & Reshotlro, A ; Davey, 9 ; present report, 0.  

In  the transformed compressible plane the boundary-layer thicknesses 8;, 8; 
and 8; are defined as follows: 

and 
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These are given correct to three decimal places in table 1 ; 8: and 8; are given 
graphically in figure 2. 

Tables of the velocity and thermal profiles are not given but some specimen 
profiles for c = 0.5 are given in figures 3 and 4t. 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 
C 

FIGURE 2. The boundary-layer thicknesses. -, ( a / v o ) ~ 6 ~ ;  - - - , (a/vo)a-G. 
Howarth, ; Cohen & Reshotko, A, Davey, Q ; present report, 0 .  

4. Physical discussion of the results 
In the following sections the similar solutions obtained in this paper are 

discussed. The two parameters defining a particular case are S, and c = b/a. 
Briefly S, > 0 or S, < 0 defines a heated or cooled surface, respectively; for the 
flow in the vicinity of a nodal point of attachment c takes values in the range 
0 < c < 1, whilst for a saddle-point of attachment c takes values in the range 
- 1  < c < 0. 

Velocity and thermal projiles 

For the case of a thermally insulated boundary it has already been established 
by Howarth (1951) that changes with c for nodal points of attachment are seen 
to be relatively small for the velocity component in the 2,-direction, but quite 

t A table of values off', g' and h for the twenty-four solutions obtained together with 
a table of h for the cases S,  = 0, may be consulted by readers on applica- 
tion to  the author or the editor. 

c = I( - $) - 
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marked in the s,-direction. For saddle-points of attachment Davey (1961) haie 
shown that part of the boundary-layer flow in the x,-direction is reversed for 
c < -0.4294. 

Consider now the effect of heating or cooling the wall. Representative profiles 
for c = 0-5, S, = 1, - 0.4 and - 1, and c = - 0.5, X, = 1, 0 and - 1 are given in 
figures 3 and 4, respectively. For a nodal point of attachment on a heated wall 
given by the parameters c = 0-5, S,, = 1 there is a slight velocity overshoot of 
order 0.3 yo of the terminal velocity in the x,-direction. This is due to the fact 
that when heat is supplied to the boundary layer the density is reduced, with 
consequential increase in flow near the edge of the boundary layer. When the 
surface is cooled no velocity overshoot is seen to occur in the x,-component of 
velocity. 

C 

r- 

SItJ E 

1.0 oo 
0.0 oo 

-0.4 0" 
-0.8 0" 
-1.0 0" 

1.0 
-h7 

%/X1 

1.00 
1.00 
1.00 
1.00 
1.00 

0.75 
A 

4' 1.07 
3' 1.05 
2' 1.04 
1' 1.03 
1" 1.02 

6 C%/XI 

0.5 
A 

9" 1.17 
7" 1.13 
5" 1.10 
4" 1.06 
2" 1.04 

& CX2lXl 

TABLE 2 

0-25 
A 

16" 1.33 
12" 1.25 
10" 1.19 
6" 1-12 
4" 1.07 

CXZ/XL 

0.0 
A 

28" 1.68 
21" 1.47 
17" 1.36 
11" 1.21 
7" 1.13 

C%/X, 

However, for a saddle-point of attachment on a heated wall defined by the 
parameters c = 0.5, S, = 1 the velocity overshoot in the x,-direction is of order 
2 yo of the terminal value. Moreover, the extent of flow reversal in the x,-direction 
is considerably increased its compared with the insulated case for c = - 0.5. Once 
again the effect of cooling the wall prevents velocity overshoot in the q-direction 
and can even delay the occurrence of flow reversal in the x,-direction. 

It is interesting to consider the changes in direction of the velocity vector in 
passing through the boundary layer. There is a limiting direction of flow on the 
surface which is also the direction of resultant skin friction. This direction i s  
inclined to the main stream at an angle E ,  where 

The maximum values of changes in direction and the corresponding values of 
(cx,/x,) are given in table 2 for nodal points of attachment. The values when 
c = 0 are limiting values as c -+ 0, and should not be confused with the two- 
dimensional situation in which c = 0 and € = 0; but for any departure from the 
two dimensional case the results of table 2 will apply. It is seen from this table 
that the most marked effect occurs when the surface is heated. 

Figures 3 and 4 show that the enthalpy function, and hence the temperature, 
varies monotonically across the boundary layer from surface to the free-stream 
value. The effect of surface temperature on the temperature variation across the 
boundary layer is more marked in the case of a saddle-point of attachment. 
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Boundary-layer thickness 

From table 1 and figure 2 it  is seen that the boundary-layer thicknesses C?:, 8; 
and 6; increase with decreasing surface temperature. Note that 8: and S,* tend 
to reach their maximum values near when flow reversal just occurs, and then 
appear to decrease once it has been established. 

Shear stress 

The shear stress components at the surface are given by 

71pu = pw v i  a$xl f"(0) = po v i  at(~,/~~)~/~-lx~ f"(o) 
7*, = cp, v i  a&r2gf'(o) = cpo v ,$a~(~ /To)y /~ -1x2  g"(0). 

(4.2) 

(4.3) and 

The quantitiesf"(0) and g"(0) are given in table 1 and figure 1. It can be seen that 
heating the wall increases the sensitivity of the wall shear to pressure gradient 
especially in the x2-direction. For AS, = 1 the quantityf"(0) reaches a minimum 
value near c = 0.25 and then increases; flow reversal occurs in this case when 
c = - 0.33. The corresponding figures for minimum value off"(0) and vanishing 
g"(0) when S, = 0 are c = - 0.3 and c = - 0.4294, respectively. 

Heat transfer relations 

The characteristic quantity representing the heat transfer at the surface is 
Nu/Re$, where the Nusselt number Nu = xl(i3T/i3x3)w/(To - T,,), and the Reynolds 
llumber Re, = ax:/.,,. In  terms of the dimensionless enthalpy gradient a t  the 
surface 

Values of h'(0) are given in table 1 and graphically in figure 1. It is seen that 
Nu/Rei decreases with increasing c reaching a minimum near the point of onset 
of flow reversal where it now begins to increase. A possible explanation of this 
is that when flow reversal just occurs the x,-velocity component is nearly zero 
in the neighbourhood of the surface such that heat is being transferred from the 
surface by conduction and by convection due to the xl- and x,-components of 
velocity. Since the x,-component of velocity varies slowly with c it follows that 
Nu/Re: must increase when the flow reversal in the x2-component of velocity 
becomes established. 

Nu/Rei = -X'(O)/S, = -h'(O). (4.4) 

Finally, from expression (4) the heat transfer coefficient 

h, = (kw/xl) Nu = k,(a/v,)* Nu/ Re:. (4.5) 

The local rate of heat transfer to the surface per unit surface area at the point of 
attachment, defined by the relation 

is 

I wish to express my sincere thanks to Professor I;. Howarth for several discus- 
sions in connexion with this paper. 
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